

USC Norris Comprehensive Cancer Center

Keck Medicine of USC

Introduction

- Breast cancer is the most common tumor and the leading cause of cancer death in women worldwide.
- Oncolytic viruses can selectively target malignant tissues without affecting normal cells.
- Pelareorep (pela) is a non-modified intravenously administered oncolytic reovirus exhibiting effective tumor suppression through both innate and adaptive immune responses, as well as direct tumor lysis.
- Our previous study demonstrated the synergistic potential of combining pela with atezolizumab, showcasing promising immunological reactions within tumors of early breast cancer patients.
- Tumor biopsies were taken from patients enrolled in Cohort 2 of the AWARE-1 study. Patients received pela, atezolizumab, and letrozole. Biopsies were taken before treatment, on day 3 (D3) before atezolizumab, followed by surgical excision on day 21 (D21).
- We employed imaging mass cytometry (IMC) to conduct high-dimensional, single-cell analysis of tissue samples, to gain deeper insights into the complex tumor immune microenvironment (TiME) pre- and post-treatment.

Multiplex analysis of the tumor immune microenvironment during treatment with atezolizumab/pelareorep/letrozole reveals novel immune-tumor interactions

Homa Dadrastoussi¹, Julian Olea¹, Eduardo Fernandez Hernandez¹, Hugo Lara Martinez¹, Kaijin Wu¹, Houra Loghmani², Thomas Heineman³, Richard Trauger³, Matt Coffey², Akil Merchant⁴, and Kevin Kelly¹

1 University of Southern California, Los Angeles, CA, USA, 2 Oncolytics Biotech Inc., San Diego, CA, USA, 4 Cedars-Sinai Medical Center, Los Angeles, CA, USA

Breast Cancer TiME Antibody Panel							
NK Cells		Macrophages		Breast Cancer			
NKG2A	NK Cells	CD14	Monocytes / Macrophages	ER	Hormone Receptor		
NKG2D	NK Cells	CD68	Monocytes / Macrophages	PR	Hormone Receptor		
ULBP2	NK Cells	CD80	Activation Marker	GATA3	Luminal TF		
Granzyme B	NK / T Cells	CD163	Macrophages (M2)	Pan-CK	Cytokeratin		
CD16	NK / Macrophage	HLA-DR	Macrophages (M1)	Macanal			
CD45RO	Cells Memory T Cells	Immune Regulator		Vimentin	epithelial- mesenchymal transition (EMT)		
CD3	T Cells	HLA-ABC	Immune Regulator	_			
CD4	Helper T Cells	IDO	Immune Regulator	Cell Death			
CD8a	Cytotoxic T Cells	PD-L1	Checkpoint	Caspase 3	Apoptosis		
FOXP3	Regulatory T Cells	PD-1	Checkpoint		:		
Dendritic Cells		HLA-E	NKG2A Ligand	K	eovirus		
CD11c	DC			Reovirus p17	Reovirus p17		
R Cells		Myeloid		Cell Growth and Division			
CD20	B Cells	CD15	Gran / MDSC	Ki-67	Proliferation		
Nuclei		CD33	Myeloid	Endothelial			
Llistono Ll2	Chromatin	CD11b	MDSC	CD31	Vascular		

Summary of Key Findings

Figure 2.

- Plots of PD-L1 expression were obtained with the 28-8 anti-PD-L1 clone quantifying expression in both tumor tissue and immune cells by IHC.
- PD-L1 expression was induced on D3 following Pela but decreased on D21 following atezolizumab.

Ki67 CD8a Pan CK				
В	<u>100 μm</u>			
CD68 CD163 GATA3				
С	100 µm			
PD-L1 PD-1 Pan-CK				
D	190 um			
IDO CD8a CD163 GATA3				
Figu The	Figure 3. Ti The presen			

nted results include a selection of key antibodies from the panel. (A) Increase in proliferating (Ki67+) cytotoxic T cells adjacent to tumor cells post-treatment (D3 and D21). (B) CD68+ macrophages infiltrated tumor on D3. Increased CD68+/CD163+ macrophages were noted on D21. (C) On D3, there was an increase in PD-1 and PD-L1 expression. By D21, PD-L1 expression decreased in tumor cells, while PD-1 expression remained. (D) Treatment induced IDO expression in tumor cells.

iME of proliferating breast cancer cells on Screening, D3 and After Surgical Excision (D21).

Summary of Key Findings

• We noticed an increase in proliferating (Ki67+) cytotoxic T cells adjacent to apoptotic (caspase 3+) tumor cells post-treatment (both D3 and D21) samples indicating immunogenic cell death.

• We observed a decrease in Ki67+ and ER+ tumor cells after treatment indicating decreased tumor cell proliferation and hormone expression.

• In 3 out of 8 patients, treatment was associated with a shift in monocyte/macrophages from an M1 (CD68+/CD163-) to M2 (CD68+/CD163+) phenotype associated with significant tumor infiltration and a significant increase in apoptotic M2 macrophages on

Consistent with the known immune priming effects of pela, both PD-1 and PD-L1 increased on D3. Subsequently, on D21, post atezolizumab, tumor PD-L1 decreased in tumor cells while PD-1 expression persisted. The decrease in PD-L1 expression may be explained by the clear reduction of tumor cells.

Treatment induced IDO expression on both tumor and monocyte/macrophage cells.

• Unlike its effect on PD-L1, atezolizumab did not appear to attenuate IDO expression on D21.

Conclusion

• Our study utilizing IMC revealed the immune-tumor interactions during and post treatment with atezolizumab/pelareorep/letrozole.

Characterization of these complex interactions allows for a deeper understanding of the key mechanisms of action of these treatments and planning of future combination studies.

References

^{1.} Shen, L., et al., *Exploration of prognosis and immunometabolism landscapes in ER+ breast cancer based on a novel lipid metabolism-related signature.* Front Immunol, 2023. **14**: p. 1199465.

^{2.} Mostafa, A.A., et al., Oncolytic Reovirus and Immune Checkpoint Inhibition as a Novel Immunotherapeutic Strategy for Breast Cancer. Cancers (Basel), 2018. **10**(6).

^{3.} Keren, L., et al., A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging. Cell, 2018. **174**(6): p. 1373-1387.e19.