

# Oncolytic Virus Therapy in Pancreatic Cancer: Clinical Efficacy and Pharmacodynamic Analysis of REOLYSIN® in Combination with Gemcitabine in Patients with Advanced Pancreatic Adenocarcinoma

<u>Devalingam Mahalingam</u><sup>1</sup>, Sanjay Goel<sup>2</sup>, Matthew Coffey<sup>3</sup>, Nicole Noronha<sup>3</sup>, Hue Tran<sup>3</sup>, Romit Chakrabarty<sup>3</sup>, Giovanni Selvaggi<sup>3</sup>, Steffan Nawrocki<sup>1</sup>, Gerard Nuovo<sup>4</sup>, Monica M. Mita<sup>5</sup>

<sup>1</sup>Cancer Therapy and Research Center, University of Texas Health Science Center San Antonio, TX; <sup>2</sup>Montefiore Medical Center, NY; <sup>3</sup>Oncolytics Biotech, Calgary, AB, Canada; <sup>4</sup>Ohio State University Comprehensive Cancer Center, OH and Phylogeny, Inc., OH; <sup>5</sup>Samuel Oschin Comprehensive Cancer Institute, CA.

## Background

- Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, with a 1-yr survival rate of ~18% for all stages of the disease.
- The standard treatment options for metastatic disease include FOLFIRINOX or gemcitabine/nab-paclitaxel, however both these treatment regimens are more toxic than gemcitabine alone.
- REOLYSIN® (Reovirus serotype 3) has shown extensive antitumor activity in preclinical models, as well as synergistic activity with cytotoxics, including gemcitabine, in various cancer types.
- REOLYSIN® antitumor activity is due to the ability of reovirus to preferentially replicate in cells with activated RAS pathway. In addition to direct cytotoxic effects, REOLYSIN® can trigger an antitumor immune response.



Figure 1: Reovirus mechanism of action

- Due to the high frequency of KRAS pathway activation in PDAC, we hypothesized that REOLYSIN® may improve the efficacy of chemotherapy.
- Therefore, this study was initiated to test the safety and efficacy of the combination of REOLYSIN® with gemcitabine in previously untreated patients with advanced PDAC.

#### Methods

- Patients with a diagnosis of chemotherapy-naïve, surgically unresectable or metastatic PDAC were eligible for the study.
- The primary objective was Clinical Benefit Rate (CBR=CR+PR+SD ≥12 weeks).
- Secondary objectives were: progression-free survival (PFS); overall survival (OS); toxicity, tolerability; pharmacodynamics.
- Eligible patients were treated with gemcitabine at 800 mg/m<sup>2</sup> on days 1 and 8, and REOLYSIN<sup>®</sup> at 1 x 10<sup>10</sup> TCID<sub>50</sub> administered IV on days 1, 2, 8 and 9 every 3 weeks. Tumor assessment was performed every 2 cycles.
- A Simon-two stage design was used for this study. In stage 1, at least 3/17 patients must have achieved CBR in order to proceed to stage 2.

# Patient demographics

| Parameter                            | REO 017 (n=34) |
|--------------------------------------|----------------|
| Age (median)                         | 66             |
| ≥65 years                            | 53%            |
| Sex (M/F)%                           | 53/47          |
| ECOG PS                              |                |
| • 0-1                                | 94%            |
| • 2                                  | 6%             |
| Ethnicity                            | 710/           |
| <ul> <li>Caucasian</li> </ul>        | 71%<br>3%      |
| • Asian                              | J /0           |
| Metastatic disease at baseline (%)   | 91             |
| Mictastatic discase at baseline (70) | JI             |
| Median no. of cycles (schedule)      | 4 (Q3wk)       |
|                                      | . ( 40)        |
| Previous chemo/radiotherapy          | 5%             |
|                                      |                |
| Post-PD therapy                      | 53%            |

#### Safety

Table 1. Most Commonly Identified Toxicities for REOLYSIN® in Combination with Gemcitabine (> 10% of patients)

| TOXICITY                                     | Total<br>(%) | Grade 3<br>(%) | Grade 4<br>(%) |
|----------------------------------------------|--------------|----------------|----------------|
| HEMATOLOGIC                                  |              |                |                |
| <ul> <li>Anemia</li> </ul>                   | 35           | 24             | 3              |
| <ul> <li>Neutropenia</li> </ul>              | 32           | 15             | 12             |
| <ul> <li>Thrombocytopenia</li> </ul>         | 15           | 6              | 0              |
| NON-HEMATOLOGIC                              |              |                |                |
| <ul> <li>Diarrhoea</li> </ul>                | 24           | 0              | 0              |
| <ul> <li>Nausea</li> </ul>                   | 29           | 0              | 0              |
| <ul> <li>Vomiting</li> </ul>                 | 24           | 0              | 0              |
| <ul> <li>Fatigue</li> </ul>                  | 71           | 9              | 0              |
| <ul> <li>Chills/Flu-like symptoms</li> </ul> | 51           | 0              | 0              |
| <ul> <li>Oedema</li> </ul>                   | 33           | 0              | 0              |
| • Fever                                      | 56           | 0              | 0              |
| <ul> <li>AST increased</li> </ul>            | 12           | 6              | 0              |
| <ul> <li>Anorexia/Weight loss</li> </ul>     | 33           | 0              | 0              |
| <ul> <li>Dyspnoea</li> </ul>                 | 50           | 6              | 0              |

## Clinical efficacy

- 34 patients recruited, 29 evaluable for response.
- CBR of 83%; one PR, 23 SD and five PD as best response.



Figure 2: (A) Survival analysis for 33 patients results in a median PFS of 4 months and a median OS of 10.2 months, with 1- and 2-year survival of 45% and 24%, respectively. (B) Spider plot showing the change in tumor size at each 6 week time point for 29 patients.

# Pharmacodynamic analysis





Extends to 26.1 months





Figure 3: We obtained on-treatment biopsy from the primary pancreatic tumor of one patient with KRAS G12D mutation which displayed positive staining for reoviral protein (A) and caspase-3 (B) by immunohistochemistry (IHC). Fluorescent *in situ* hybridization (FISH) demonstrated co-expression of reovirus and caspase-3 proteins as indicated by the fluorescent yellow consistent with productive lytic infection and ongoing apoptosis (C). Following REOLYSIN® therapy, IHC data shows the upregulation of immune marker PD-L1(D).

#### Conclusions

- REOLYSIN® in combination with gemcitabine has demonstrated clinical benefit in patients with advanced PDAC, with promising survival advantage and a favorable toxicity profile.
- Pharmacodynamics analysis show reovirus replication within pancreatic tumor and associated apoptosis in one patient with long term SD.
- Upregulation of immune checkpoint marker PD-L1 suggests combining oncolytic viral therapy with anti-PD-L1 inhibitors in future trials.